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A stochastic approach to the quantum dynamics randomly modulated in time by a discrete state non-
Markovian noise, which possesses an arbitrary nonexponential distribution of the residence times, is devel-
oped. The formallyexact expression for the Laplace-transformed quantum propagator averaged over the
stationaryrealizations of suchN-state non-Markovian noise is obtained. The theory possesses a wide range of
applications. It includes some previous Markovian and non-Markovian theories as particular cases. In the
context of the stochastic theory of spectral line shape and relaxation, the developed approach presents a
non-Markovian generalization of the Kubo-Anderson theory of sudden modulation. In particular, the exact
analytical expression is derived for the spectral line shape of optical transitions described by a Kubo oscillator
with randomly modulated frequency which undergoes jumplike non-Markovian fluctuations in time.
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I. INTRODUCTION

The dynamics of classical and quantum systems in the
presence of randomly fluctuating microfields of the environ-
ment presents one of the fundamental problems in physics.
Spin relaxation in solids[1,2], exciton transport in molecular
systems[3], single-molecular spectroscopy[4], and classical
transport processes with fluctuating barriers[5] present a few
relevant examples. A popular approach consists in modeling
the ambient noise influence by means of a classical stochas-
tic field acting on the dynamical system. In the case of quan-
tum systems, such a phenomenological approach is known
under the label of a stochastic Liouville equation(SLE) ap-
proach[7–9]. It is suitable in the limit of sufficiently high
(formally infinite) temperatures[3,9]. In the field of chemical
kinetics a similar methodology is known under the label of
rate processes with dynamical disorder where the rates of
chemical reactions fluctuate[6]. Moreover, the addition of a
nonequilibrium classical noise into dissipative quantum dy-
namics can serve to describe the influence of the nonequilib-
rium environmental degrees of freedom on the transport
properties[10].

The tractability of the SLE approach, which allows one to
arrive at the exact model solutions in several known cases,
has made it popular over the years. For example, the case of
two-state quantum dynamics subjected to a white Gaussian
noise can be treated exactly and the correspondingexact
master equations for the averaged parameters of quantum
systems can be derived[3,9]. However, already in the case of
a colored Gaussian noise(the so-called colored noise prob-
lem) a perturbation theory must be used which leads gener-
ally to an approximate description—e.g., within a general-
ized master equation approach[11].

What to do, however, when the ambient noise has a non-
Gaussian statistics and/or it does exhibit long-range, e.g.,

power law temporal correlations with a very large, practi-
cally infinite range? A relevant example is given by a 1/fa

noise which is ubiquitous in the amorphous solids and other
glasslike materials like proteins[12,13]. Any perturbation
theory in such situations will certainly fail and we are con-
fronted with a rather difficult problem. Nevertheless, for an
arbitrary quantum dynamics the problem of finding the cor-
responding noise-averaged propagator can be solved exactly,
at least formally, for a rather general class of non-Markovian
jump processes modeled as a continuous-time random walk
(CTRW) [14–16] within arbitrary, but finite number of states
N. A similar problem has been already considered in several
previous works, notably in Refs.[17,18]. These works did
not solve, however, the problem at hand for the case ofsta-
tionary noise averaging for a multistate non-Markovian
noise, when the evolution of the considered stochastic pro-
cess starts in the infinite past, and not simultaneously with
the evolution of the considered dynamical system. In the
case of a non-Markovian noise this problem isnot trivial.
Physically this is but the most important and relevant case to
study.

In this work we utilize the most general description of the
discrete state non-Markovian processes of the CTRW type
with uncorrelated jumps. Generally, such processes are de-
fined by the set of probability densitiesci jstd for making
transitions among the discrete noise states[16]. The noise-
averaged quantum propagator is obtained below for this gen-
eral case. The approaches of Refs.[17] and [18] are unified
within this general description. Next, the problem of station-
ary noise averaging is considered. It is shown in a construc-
tive way how to make the stationary noise averaging in the
case of factorized probability densities like in Ref.[18], but
with the time-independent matrix of transition probabilities
pij . In this respect, the present work is most close to Ref.
[19], where a similar approach has been proposed; however,
the explicit solution for the stationary noise-averaged quan-
tum propagator has not been obtained. The corresponding
formally exact expression for the Laplace-transform-
averaged propagator is found in this work in the explicit
form for the first time. This presents thefirst main result of
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this work which possesses an ample range of applications. In
particular, the noise-averaged propagator of the Kubo oscil-
lator with a stochastically modulated frequency, as well as
the corresponding line shape form, is also obtained. This
presents thesecondmain result of this work which can be
important, e.g., for the single-molecular spectroscopy.

II. MODEL AND THEORY

Let us consider an arbitrary quantum system with the

Hamilton operatorĤfjstdg which depends parametrically on
the stochastic processjstd which in turn can acquire ran-
domly in timeN discrete valuesji. Accordingly, the Hamil-

tonian Ĥfjstdg can take onN different random operator val-

uesĤfjig. The discrete stochastic process is assumed to be a
non-Markovian renewal process which is fully characterized
by the set of probability densitiesci jstd which describe ran-
dom transitions among the statesji. Namely, ci jstd is the
probability density for making transition from the statej to
the statei. These probability densities must obviously be
positive and obey the normalization conditions

o
i=1

N E
0

`

ci jstddt = 1, s1d

for all j =1, . . . ,N. All random transitions are assumed to be
mutually independent.1 The residence time distribution
(RTD) c jstd in the statej reads obviously

c jstd = o
i

ci jstd. s2d

The survival probabilityF jstd of the statej follows then as

F jstd =E
t

`

c jstddt. s3d

This is the most general description used in the CTRW
theory [16].

The problem is to average the quantum dynamics in the
Liouville space which is characterized by the Liouville–von
Neumann equation

d

dt
rstd = − iLfjstdgrstd s4d

for the density operatorrstd over the realizations of noise
jstd. HereLfjstdg in Eq. (4) stands for the quantum Liouville

superoperator,Lfjstdgs·d=s1/"dfĤfjstdg ,s·dg. In other words,
one has to find the noise-averaged propagator

kUst0 + t,t0dl =KT expf− iE
t0

t0+t

LfjstdgdtgL , s5d

whereT denotes the time-ordering operator. It is the major
advance of this work that we obtain the Laplace transform of
propagator (5) in the exact form for arbitrary non-
Markovian processesjstd of the discussed form. The results
of previous research work done within the framework of
SLE approach for the discrete Markovian processes[2] fol-
low as a particular Markovian limit of the developed non-
Markovian theory. Moreover, some previous non-Markovian
theories, notably that by van Kampen[17] and that by Ch-
vosta and Reineker[18], are also included as different inter-
pretations of this general formulation.

In particular, the approach of van Kampen is reproduced
by introduction of the time-dependentage-specificrateskijstd
like in the renewal theory[20]. The probability densities
ci jstd then read2 [17]

ci jstd: = kijstdexpF− o
i
E

0

t

kijstddtG . s6d

The Markovian case corresponds tokijstd=const. Any devia-
tion of ci jstd from the strictly exponential form which yields
a time dependence of the transition rateskijstd amounts to a
non-Markovian behavior.3 Furthermore, the survival prob-
ability F jstd in the statej within the time-dependent rate
description is given by

F jstd = expF− o
i=1

N E
0

t

kijstddtG s7d

and Eq.(6) then can be recast as

ci jstd: = kijstdF jstd. s8d

The introduction of time-dependent rates is one possible way
to describe the non-Markovian effects(see footnote 2). It is
not unique. For example, Chvosta and Reineker adopted a
quite different and more general standpoint[18]. Namely,
they defined

1This is the so-called semi-Markov assumption. The term “semi-
Markov,” frequently used in the mathematical literature, is, how-
ever, somewhat unfortunate. It comes from a generalization of the
discrete time Markovian chain processes to the continuous time
case. Such continuous time processes are, however, generally non-
Markovian since the statistical independence of the residence time
intervals does not imply yet that all the multitime joint probability
distributions for the considered process can be factorized through
the corresponding two-time conditional and single-time probability
distributions.

2Note that such a time dependence ofkij std has nothing to do with
the possible nonstationarity invoked—e.g., due to the action of ex-
ternal fields like in the problem of stochastic resonance(SR) [21].
Introducing such time-dependent rates is merely a language to de-
scribe the non-Markovian memory effects. In the case of a nonsta-
tionary background noise driven by a time-dependent signal(like in
the non-Markovian SR problem; cf.[22]) the use of such language
in a non-Markovian situation should be avoided as it can potentially
confuse the reader.

3This observation can be rationalized as follows. Let us consider a
sojourn in the statej characterized by the survival probabilityF jstd.
The corresponding residence time intervalf0,tg can be arbitrarily
divided into two piecesf0,t1g andft1,tg. If no memory effects are
present, thenF jstd=F jst−t1dF jst1d. The only nontrivial solution
of this latter functional equation which decays in time readsF jstd
=exp s−g jtd, with g j .0. This corresponds to a Markovian case.

IGOR GOYCHUK PHYSICAL REVIEW E70, 016109(2004)

016109-2



ci jstd: = pijstdc jstd, s9d

with oi pijstd=1. The interpretation is as follows. The pro-
cess stays in the statej during a random time interval char-
acterized by the probability densityc jstd. At the end of this
time interval the process makes jump into the statei with a
generally time-dependent conditional probabilitypijstd. In-
deed, any stochastic process of the considered kind can be
interpreted in this way. For some particular applications in
[18] the probability densitiesc jstd were taken strictly expo-
nential and all the non-Markovian effects were assumed to
come from thetime-dependenttransition probabilitiespijstd.
By equating Eqs.(8) and (9) and taking into account that
c jstd : =−dF jstd /dt it is easy to see that the van Kampen
approach can be reduced to that of Chvosta and Reineker
with the time-dependent transition probabilities

pijstd =
kijstd

oi
kijstd

s10d

and with the nonexponential probability densitiesc jstd
which follow as c jstd=g jstdexpf−e0

t g jstddtg with g jstd :
=oi kijstd.

The description of non-Markovian effects with the time-
dependent transition probabilitiespijstd seems, however, be
merely a theoretical device. It appears to be rather difficult
(if possible) to obtainpijstd from the sample trajectories of
an experimentallyobservedrandom processjstd. In view of
Eq. (10) the same is valid for the concept of time-dependent
rates. These rates cannot be measured directly from the
sample trajectories. On the contrary, the RTDc jstd and the
time-independent pij (with pii : =0, which is assumed in the
following) can be routinely deduced from the sample trajec-
tories measured in asingle-molecularexperiment. This latter
description is definitely more advantageous from the practi-
cal point of view. From the experimentally well-defined
quantitiesF jstd and pij , the corresponding time-dependent
rates description can be readily found as

kijstd = − pij
d lnfF jstdg

dt
. s11d

Moreover, as will be shown below, this description with con-
stantpij in Eq. (9) does provide a consistent way in order to
construct thestationary realizations of thenon-Markovian
processjstd and, therefore, in order to findkUstdl averaged,
correspondingly, over thestationary realizations of jstd.
These circumstances give definite advantages of the ap-
proach with factorizedci jstd and time-independent pij as
compare with the formulations in[17,18], even though the
technical details are quite similar. The correct quantum-
mechanical propagator averaged over thestationaryrealiza-
tions of anon-Markoviandiscrete-state noise with an arbi-
trary number of states is obtained in this work for the first
time. This corresponds to the situation where the quantum
system was prepared at the timet0 in a nonequilibrium state
described by the density matrixrst0d, but the noise was not
specially prepared but it has been already relaxed to its sta-
tionary state. The ambient noise evolution was started in the

infinite past and one assumes that the initial preparation of
the quantum system in a nonequilibrium state has no influ-
ence on the noise source. This is the most important physical
situation to confront with.

The task of performing the noise averaging of the quan-
tum dynamics in Eq.(5) can be solved exactly due the piece-
wise constant character of the noisejstd [23,24]. Namely, let
us consider the time intervalft0,tg and to take a frozen real-
ization of jstd assumingk switching events within this time
interval at the time instantsti:

t0 , t1 , t2 , ¯ , tk , t. s12d

Correspondingly, the noise takes on the valuesj j0
,j j1

, . . . ,j jk
in the time sequel. Then, the propagatorUst ,t0d reads obvi-
ously

Ust,t0d = e−iLfj jk
gst−tkde−iLfj jk−1

gstk−tk−1d
¯ e−iLfj j0

gst1−t0d.

s13d

Let us assume first that it is known with certainty that at the
time instantt0 the processjstd hasjust startedits sojourn in
the statej0. In other words, the processjstd has beenpre-
pared in the statej0 at t0. Then, the correspondingk-times
conditional probability density for such noise trajectory real-
ization is

Pksj jk
,tk;j jk−1

,tk−1; . . . ;j j1
,t1uj j0

,t0d

= F jk
st − tkdc jkjk−1

stk − tk−1d ¯ c j1j0
st1 − t0d. s14d

In order to obtain the noise-averagedkUst ,t0dl j0
conditioned

on suchnonstationaryinitial noise preparation one has to
average Eq.(13) with the probability measure in Eq.(14)
(for k=0, . . . ,̀ ). Literally (operationally) this means the fol-
lowing. First, one has to construct the time-ordered product
of Eqs.(13) and (14)—i.e.,

F jk
st − tkde−iLfj jk

gst−tkdc jkjk−1
stk − tk−1de−iLfj jk−1

gstk−tk−1d . . .

3c j1j0
st1 − t0de−iLfj j0

gst1−t0d. s15d

Second, one has to perform thek-dimensional time integra-
tion of Eq. (15) over the variableshtkj within the time-
ordered domain(12) and to sum the results over all possible
h jkj. Furthermore, this procedure has to be repeated for every
k=0, . . . ,̀ and the results summed at the end. The casek
=0 is special with

P0sj j0
,t0d = F j0

st − t0d. s16d

The just outlined task can be easily done formally by use

of the Laplace transform, denoted in the following asÃssd :
=e0

` exps−stdAstddt for any time-dependent quantityAstd.
For this goal, let us introduce two auxiliary matrix operators

Ãssd and B̃ssd with the matrix elements

Ãklssd: = dklE
0

`

Flstde−ss+iLfjlgdtdt s17d

and
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B̃klssd: =E
0

`

cklstde−ss+iLfjlgdtdt, s18d

correspondingly. Then all what remains to do is to sum the
geometric matrix operator series. The result reads,

kŨssdl j0
= o

i

hÃssdfI − B̃ssdg−1ji j 0
, s19d

whereI is the unity matrix. It is quite obvious that instead of
the quantum Liouville operator in Eq.(4) there could be any
linear operator—e.g.,L could be a matrix andrstd could be
then a vector function. Then, the developed theory can be
immediately applied to the averaging of arbitrary linear sto-
chastic differential equations[24,25]. Even nonlinear sto-
chastic differential equations can be attempted to deal with
by introducing a Liouville equation for the corresponding
classical probability density[25]. The earlier results in[17]
and[18] are reproduced immediately from Eqs.(17)–(19) by
an appropriate modification of the considered problem and
specifying the transition probability densitiesci jstd from a
most general(nonfactorized form) to a particular representa-
tion in accordance with the above discussion.

The derived result in Eqs.(17)–(19) corresponds to the
initial preparation ofjstd in a particular statej0. Experimen-
tally, this presents a quite unusual and strongly nonequilib-
rium situation. For a stationary environment one has to per-

form yet an additional averaging ofkŨssdl j0
over the initial

distribution pj0
st0d taken as the stationary distribution—i.e.,

pj0
st0d=pj0

st, where pj
st=limt→`pjstd. Indeed, this presents a

valid prescription for stationary noise averaging in the Mar-
kovian case. However, in a non-Markovian case this pre-
scription is not sufficient.

Quite generally, the stationarity of noise realizations in the
strict sense requires[25] that not only the single-time distri-
bution pjstd, but also all the multitime joint probability dis-
tributions of the given process must be invariants of a simul-
taneous time shift of all time arguments. However, for many
physical applications, the stationarity in a weak sense—i.e.,
on the level of the two-time Ps j ,t ; j0,t0d joint
distribution—is sufficient. Then, e.g., the stationary power
spectrum of the corresponding process can be defined. This
two-time joint distribution can be expressed asPs j ,t ; j0,t0d
=P j j 0st u t0dpj0st0d via the conditional probabilitiesP j j 0st u t0d
(propagator of the process). For a stationary process the con-
sistency condition,pj

st=o j0P j j 0st u t0dpj0
st, must be satisfied for

all times; i.e.,pj
st has to be the fixed point of the correspond-

ing propagator(see the Appendix). The propagator of the
non-Markovian process having this property can be called
quasistationary. In the present case, in order to construct such
a propagator and the corresponding stationary realizations of
the noise trajectories the probability density of thefirst time
intervals must differ from the all subsequent ones. Indeed, if
a noise statej was occupied att= t0 with the stationary prob-
ability pj

st, it is not known for how long this state was already
occupiedbefore t0. The proper conditioning on and averag-
ing over this unknown time must be made and the corre-
sponding survival probabilities for thefirst residence time

interval t0= t1− t0 be introduced.4 These survival probabili-
ties read5 [20]

F j
s0dstd =

E
t

`

F jst8ddt8

kt jl
, s20d

wherekt jl=e0
` F jstddt is the mean residence time(MRT) of

the noise in the statej . Only for strictly exponential survival
probabilities—i.e., in the Markovian case—F j

s0dstd=F jstd.
Otherwise, this is not the case. The corresponding residence
time distributions follow immediately as the negative time
derivative ofF j

s0dstd in Eq. (20) and are known to be[15,20]

c j
s0dstd =

F jstd
kt jl

. s21d

The first time transition densitiesci j
s0dstd then follow as

ci j
s0dstd = pij

F jstd
kt jl

. s22d

For the logical consistency of this definition with the consid-
eration pursued in footnote 4,pij must betime-independent
constants. Otherwise, a logical problem emerges: How to
make the proper conditioning ofpijstd on the unknown times
before t0? This is the reason why within the approaches of
time-dependentpijstd or time-dependent rateskijstd it is
rather obscure how to solve the problem of stationary noise
averaging. Therefore, these approaches do not seem suit well
for this stated purpose.

In accord with the above discussion, the transition density
c j1j0

st1− t0d in Eq. (14) must be replaced byc j1j0

s0d st1− t0d from
Eq. (22). Moreover,F j0

st− t0d in Eq. (16) must be replaced
by F j0

s0dst− t0d from Eq. (20). To account for these modifica-

tions, two auxiliary quantitiesÃkl
s0dssd and B̃kl

s0dssd are intro-
duced which are given by the expressions similar to Eqs.
(17) and (18), but with F j

s0dstd instead ofF jstd and ci j
s0dstd

instead ofci jstd—i.e.,

4A clear-cut proof of this fact was presented in many works; see,
e.g., [15,22]. We reproduce it here for the reader’s convenience.
Indeed, it is not known for how long the initial statejst0d was
already occupiedbefore the observation started att0=0. Without
loss of generality, let us assumejs0d=j j and the unknown time
elapsed beforet0=0 wast* . Then, the actual survival probability at
t=t0 is F jst* +t0d. On the other hand,F jst* +t0d=F jst0ut*dF jst*d,
where the correspondingconditionalsurvival probabilityF jst0ut*d
is introduced. This latter relation serves just as a definition for
F jst0ut*d. In the Markovian caseF jst0ut*d=F jst0d. To obtain the
survival probability of the first time interval F j

s0dst0d,
one must averageF jst0ut*d over the probability density oft*

which is pjst*d=F jst*d /e0
` F jstddt. Therefore, F j

s0dst0d :
=e0

` F jst0ut*dpjst*ddt* . Proceeding along these lines, the important
relation (20) follows immediately.

5Note that no averaging over the unknown timest* (see footnote
4) was made in[17] (see Appendix C there). Therefore, the problem
of stationary noise averaging was not solved in this important paper.
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Ãkl
s0dssd: =

dkl

ktll
E

0

`

e−ss+iLfjlgdtE
t

`

Flst8ddt8dt s23d

and

B̃kl
s0dssd: =

pkl

ktll
E

0

`

Flstde−ss+iLfjlgdtdt =
pkl

ktll
Ãllssd. s24d

The resulting geometric operator series can again be easily
summed exactly. For the(stationary) noise-averaged

Laplace-transformed propagatorkŨssdl we obtain

kŨssdl = o
i j

hÃs0dssd + ÃssdfI − B̃ssdg−1B̃s0dssdji j pj
st, s25d

where

pj
st =

kt jl

o
k

ktkl
s26d

are the stationary occupation probabilities ofj j [see Eq.
(A10) in the Appendix and the corresponding discussion].
This result can be brought into a physically more insightful
form by using the identityet

` F jst8ddt8=kt jl−e0
t F jst8ddt8

and upon introducing two new auxiliary quantities

C̃klssd: = dklE
0

`

e−ss+iLfjlgdtE
0

t

Flst8ddt8dt s27d

and

D̃klssd: = dklE
0

`

clstde−ss+iLfjlgdtdt. s28d

Finally we obtain

kŨssdl = kŨssdlstatic−
1

T
o
i j

hC̃ssd − ÃssdfI − PD̃ssdg−1PÃssdji j ,

s29d

where kŨssdlstatic is the Laplace transform of the statically
averaged propagator,

kUstdlstatic: = o
k

e−iLfjkgtpk
st, s30d

T=ok ktkl is the sum of mean residence times, andP is the
matrix of transition probabilitiespij [“scattering matrix” of
the random processjstd]. The result in Eqs.(29) and (30)
together with Eqs.(17), (27), and (28) presents the corner-
stone result of this work which can be used in numerous
applications.

III. APPLICATION: KUBO OSCILLATOR

As a simplest practical example we consider the averag-
ing of the so-called Kubo oscillator

ẋstd = ivfjstdgxstd. s31d

This particular problem appears in the theory of optical line
shapes, in the nuclear magnetic resonance[1,2], and in the

single-molecular spectroscopy[4]. In Eq. (31), vfjstdg pre-
sents a stochastically modulated frequency of quantum tran-
sitions between the levels of a “two-state atom” or between
the eigenstates of a spin 1/2 which are caused by the action
of a resonant laser or magnetic field, respectively. The spec-
tral line shape is determined through the corresponding sto-
chastically averaged propagator of Kubo oscillator as[2]

Isvd =
1

p
lim

e→+0
RefŨsiv + edg. s32d

Note that the limite→ +0 in Eq. (32) is necessary for the
regularization of the corresponding integral in the quasistatic
limit T→`. By identifying Lfjkg with −vk in Eq. (29) we
obtain after some algebra

kŨssdl = o
k

pk
st

s− ivk
−

1

o
k

ktkl
o
k

1 − c̃kss− ivkd
ss− ivkd2

+
1

o
k

ktkl
o
n,l,m

1 − c̃lss− ivld
s− ivl

S 1

I − PD̃ssd
D

lm

3pmn
1 − c̃nss− ivnd

s− ivn
, s33d

with D̃nmssd=dnmc̃mss− ivmd. The corresponding line shape
follows immediately from Eq.(33) by virtue of Eq. (32).
This result presents a non-Markovian generalization of the
earlier result by Kubo[2] for arbitraryN-state discrete Mar-
kovian processes. The generalization consists in allowing for
arbitrary non-exponential RTD’sckstd or, equivalently, in
accordance with Eq.(11) for time-dependent transition rates
kijstd. This generalization is obtained here for the first time
and presents one of our main results. Let us further simplify
the result in Eq.(33) for the case of two-state non-Markovian
noise withp12=p21=1. Then, Eq.(33) yields after some sim-
plifications

kŨssdl = o
k=1,2

1

s− ivk

ktkl
kt1l + kt2l

+
sv1 − v2d2

skt1l + kt2ldss− iv1d2ss− iv2d2

3
f1 − c̃1ss− iv1dgf1 − c̃2ss− iv2dg

1 − c̃1ss− iv1dc̃2ss− iv2d
. s34d

With Eq. (34) in Eq. (32) one obtains the result for the cor-
responding spectral line shape which is equivalent to one
obtained recently in Ref.[26] using a different method. It is
reproduced here as a simplest application of our more gen-
eral approach.

IV. SUMMARY

In this work the problem of the stochastic averaging of a
quantum dynamics with non-Markovian fluctuating param-
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eters has been investigated within the trajectory description
of continuous time random walk theory. The formally exact
expression for the stochastically averaged quantum-
mechanical propagator is obtained for the most general
CTRW with uncorrelated jumps and for a nonequilibrium
noise preparation. The problem of stationary noise averaging
has been solved for the practically relevant formulation with
the time-independent matrix of transition probabilitiespij .
Especially, the formally exact expression for the stationary
averaged quantum propagator has been found in an explicit
form. This general expression has been used on order to find
the stationary propagator of the Kubo oscillator describing
the spectral line shape of optical transitions in a two-state
atom. Further applications, such as decoherence of a two-
state quantum dynamics driven by two-state non-Markovian
noises, including 1/fa noise case, are in progress.

ACKNOWLEDGMENTS

This work has been supported by the Deutsche Fors-
chungsgemeinschaft via the Sonderforschungsbereich SFB-
486, “Manipulation of matter on the nanoscale,” Project No.
A10.

APPENDIX: PROPAGATORS AND GENERALIZED
MASTER EQUATIONS

In this appendix, both the nonstationary propagator and
the propagator for quasistationary initial preparations for the
considered non-Markovian processes are obtained, along
with the corresponding generalized master equations
(GME’s). The propagatorPi j of the processjstd or the ma-
trix of conditional probabilities connects the initial probabil-
ity vector pWst0d with the final one,pWst0+td—i.e.,

pist0 + td = o
j

Pi jst0 + tut0dpjst0d. sA1d

The expression for the Laplace transformP̃i jssd can be ob-
tain in a way similar to the averaging of quantum propagator
in Eqs.(19) and (25). Basically, one has to put thereL→0.
For the nonstationary propagator ofjstd—i.e., when the pro-
cessjstd starts its evolution att= t0 in a particular state—the
result reads for the general case of nonfactorized probability
densitiesci jstd as follows:

P̃i jssd = F̃issdhfI − C̃ssdg−1ji j , sA2d

where C is the matrix of c̃i jssd and F̃ jssd=f1−c̃ jssdg /s,

c̃ jssd=oi c̃i jssd. For quasistationary initial preparations the
propagator of the non-Markovian process is generally differ-
ent [22,27]. In the factorized caseci jstd=pijc jstd it reads for
the considered process[cf. Eq. (25)]:

P̃i j
stssd = F̃i

s0dssddi j + F̃issdo
k

hfI − C̃ssdg−1jikpkj
F̃ jssd
kt jl

,

sA3d

whereF̃ j
s0dssd=1/s−f1−c̃ jssdg / ss2kt jld. The stationary popu-

lations follow as pi
st=lims→0fsP̃i jssdg. The quasistationary

propagatorPi j
ststu0d must satisfy the consistency condition

pi
st=o j Pi j

ststu0dpj
st for all timest; i.e., pWst is the fixed point of

Pi j
ststu0d. Let us prove this fact and findpi

st. It is more con-
venient to do both tasks by finding first the corresponding
GME’s for pistd. These generalized master equations are of
substantial interestper se.

In order to find the corresponding GME’s the procedure
of [19] can be applied to a more general present case of
nonfactorizedci jstd. Indeed, let us consider the conditional
probability Pks j u j0dstd for making k jumps within the time
interval f0,tg starting att=0 in the statej0 with the probabil-
ity pj0

s0d and finishing in the statej with the probability
pjstd. This probability is given by a corresponding
k-dimensional integral of Eq.(14) [see the discussion below
Eq. (14)] with the summation made overjk−1, jk−2, . . . ,j1.

The corresponding Laplace transformP̃j j 0

skdssd reads

P̃j j 0
skdssd = o

jk−1

¯ o
j1

F̃ jssdc̃ j j k−1
ssd ¯ c̃ j2j1

ssdc̃ j1j0
s0d ssd

sA4d

for k.0. Here, Eq.(14) was used in a slightly modified form
with ci j

s0dstd for the probability densities of the first time in-

tervals. Furthermore, fork=0, P̃j j 0

s0dssd=F̃ j
s0dssdd j j 0

, where

F̃ j
s0dssd is the Laplace transform of the corresponding sur-

vival probability F j
s0dstd=oi et

` ci j
s0dst8ddt8 of the first time

interval. Forkù2, the quantitiesP̃j j 0

skdssd satisfy obviously the
following recurrence relation:

P̃j j 0
skdssd = F̃ jssdo

n

c̃ jnssd
P̃nj0

sk−1dssd

F̃nssd
. sA5d

Furthermore, the Laplace transform of propagatorP̃ j j 0
ssd is

expressed in terms ofP̃j j 0

skdssd as P̃ j j 0
ssd=ok=0

` P̃j j 0

skdssd. Then,
by virtue of Laplace-transformed equation(A1) with t0=0,

o
k=2

`

o
j0

P̃j j 0
skdssdpj0

s0d = p̃jssd − o
j0

P̃j j 0
s1dssdpj0

s0d − P̃j j
s0dssdpjs0d

= F̃ jssdo
n

c̃ jnssd
1

F̃nssd
o
k=2

`

o
j0

P̃nj0
sk−1dssd

3pj0
s0d, sA6d

where the recurrence relation(A5) has been used. The use of

ok=2
` o j0

P̃nj0

sk−1dssdpj0
s0d= p̃nssd−F̃n

s0dssdpns0d in Eq. (A6) fi-
nally yields

p̃jssd = F̃ jssdo
n

c̃ jnssd
p̃nssd

F̃nssd
+ F̃ j

s0dssdpjs0d

+ F̃ jssdo
n
Sc̃ jn

s0dssd − c̃ jnssd
F̃n

s0dssd

F̃nssd
Dpns0d.

sA7d

Let us consider now the case when the noise has been pre-
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pared att0=0 in a particular state with the probability one.
Then,ci j

s0dstd;ci jstd and the last term in Eq.(A7) vanishes.
For this class of nonequilibrium initial preparations, the in-
version of Eq.(A7) yields

ṗjstd = − o
n
E

0

t

Gnjst − t8dpjst8ddt8

+ o
n
E

0

t

G jnst − t8dpnst8ddt8, sA8d

where the Laplace-transformed kernels reads

G̃ jnssd =
sc̃ jnssd

1 − c̃nssd
, sA9d

with c̃nssd=o j c̃ jnssd. The just derived GME(A8) and (A9)
is the most general GME for the continuous time random
walk processes with uncorrelated jumps for the given class
of initial preparations. In the case of factorized(but still non-
separable) CTRW with ci jstd=pijc jstd it reduces to the
GME of Burstein, Zharikov, and Temkin[19]. Moreover,
with the assumption that allc jstd are equal (separable
CTRW of Montroll and Weiss), it reduces further to the
GME of Kenkre, Montroll, and Shlesinger[28]. The station-
ary populations can be obtained from Eq.(A7) as pj

st

=lims→0fsp̃jssdg. Assuming that the mean residence times

kt jl exist—i.e., c̃i jssd=ai j −stij +ossd with oi ai j =1 and
oi ti j =kt jl— Eq. (A7) yields the system of linear algebraic
equations for the stationary populations:

pj
st

kt jl
= o

n

a jn

pn
st

ktnl
. sA10d

For an ergodic process the stationary probability to find the
process in a particular state should be proportional to the
time which the process spends in this particular state on
average—i.e., be given by Eq.(26). It is easy to verify that
Eq. (26) provides the solution of Eq.(A10) for o j ai j =1 (for
the factorized caseai j coincide obviously withpij). This lat-
ter condition can be also expressed as

o
j=1

N E
0

`

ci jstddt = 1. sA11d

For factorized case c jnstd=pjncnstd with c j
s0dstd

=F jstd / kt jl (see footnote4), the inversion of Eq.(A7) yields
the GME for the discussed non-Markovian process with qua-
sistationary initial preparations:

ṗjstd = −E
0

t

G jst − t8dfpjst8d − pjs0dgdt8 + o
n

pjnE
0

t

Gnst − t8d

3fpnst8d − pns0dgdt8 −
pjs0d
kt jl

+ o
n

pjn
pns0d
ktnl

, sA12d

with the kernels given byG̃ jssd=sc̃ jssd / f1−c̃ jssdg. By choos-
ing pns0d=pn

st which satisfy Eq.(A10) it becomes obvious
that pnstd=pn

st is the solution of Eq.(A12) for all timest.0.
This means that the stationarypWst provides indeed the fixed
point of the corresponding quasistationary propagator.
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