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Quantum dynamics with non-Markovian fluctuating parameters
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A stochastic approach to the quantum dynamics randomly modulated in time by a discrete state non-
Markovian noise, which possesses an arbitrary nonexponential distribution of the residence times, is devel-
oped. The formallyexact expression for the Laplace-transformed quantum propagator averaged over the
stationaryrealizations of suciN-state non-Markovian noise is obtained. The theory possesses a wide range of
applications. It includes some previous Markovian and non-Markovian theories as particular cases. In the
context of the stochastic theory of spectral line shape and relaxation, the developed approach presents a
non-Markovian generalization of the Kubo-Anderson theory of sudden modulation. In particular, the exact
analytical expression is derived for the spectral line shape of optical transitions described by a Kubo oscillator
with randomly modulated frequency which undergoes jumplike non-Markovian fluctuations in time.
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I. INTRODUCTION power law temporal correlations with a very large, practi-
. ) . cally infinite range? A relevant example is given by &/
The dynamics of classical and quantum systems in the,ise which is ubiquitous in the amorphous solids and other
presence of randomly fluctuating microfields of thg environ-g|assiike materials like proteinl2,13. Any perturbation
ment presents one of the fundamental problems in phy3|c§heory in such situations will certainly fail and we are con-
Spin relaxation in solid1,2], exciton transport in molecular fonted with a rather difficult problem. Nevertheless, for an
systemg3], single-molecular spectroscopd], and classical  grpjtrary quantum dynamics the problem of finding the cor-
transport processes with fluctuating barrigggpresent a few  responding noise-averaged propagator can be solved exactly,
relevant examples. A popular approach consists in modeling; |east formally, for a rather general class of non-Markovian
the ambient noise influence by means of a classical stochaﬁjmp processes modeled as a continuous-time random walk
tic field acting on the dynamical system. In the case _of quantcTRW) [14—16 within arbitrary, but finite number of states
tum systems, such a phenomenological approach is knowq A similar problem has been already considered in several
under the label of a stochastic Liouville equatiBLE) ap-  previous works, notably in Ref§17,18. These works did
proach[7.—9].. Itis suitable in the limit of _suff|C|entIy hlgh not solve, however, the problem at hand for the casstaf
(formally infinite) temperatureg3, 9. In the field of chemical  tionary noise averaging for a multistate non-Markovian
kinetics a similar methodology is known under the label of\sise " when the evolution of the considered stochastic pro-
rate processes with dynamical disorder where the rates Qfess starts in the infinite past, and not simultaneously with
chemical reactions fluctuafé]. Moreover, the addition of @ {he eyolution of the considered dynamical system. In the
nonequilibrium classical noise into dissipative quantum dy-.ase of a non-Markovian noise this problemnist trivial.
namics can serve to describe the influence of the nonequilibopysically this is but the most important and relevant case to
rium environmental degrees of freedom on the transporgy,qy.
properties[10]. _ In this work we utilize the most general description of the
The tractability of the SLE approach, which allows one t0gjscrete state non-Markovian processes of the CTRW type
arrive at the exact model solutions in several known casesyitn uncorrelated jumps. Generally, such processes are de-
has made it popular over the years. For example, the case gfeq by the set of probability densitieg;(7) for making
two-state quantum dynamics subjected to a white Gaussig,sitions among the discrete noise stdts). The noise-
noise can be treated exactly and the cormespon@i&Ct  4yeraged quantum propagator is obtained below for this gen-
master equations for the averaged parameters of quantum},| case. The approaches of R¢f7] and[18] are unified
systems can be derivéd,9]. However, already in the case of \yithin this general description. Next, the problem of station-
a colored Gaussian noigene so-called colored noise prob- 1 noise averaging is considered. It is shown in a construc-
lem) a perturbation theory must be used which leads genety e yway how to make the stationary noise averaging in the
ally to an approximate description—e.g., within a general;se of factorized probability densities like in REE8], but

ized master equation approagtl]. with the time-independent matrix of transition probabilities

What to do, however, when the ambient noise has a MO, In this respect, the present work is most close to Ref.
Gaussian statistics and/or it does exhibit long-range, €.9[19], where a similar approach has been proposed; however,

the explicit solution for the stationary noise-averaged quan-

tum propagator has not been obtained. The corresponding
*On leave from Bogolyubov Institute for Theoretical Physics, formally exact expression for the Laplace-transform-
Kiev, Ukraine. Electronic address: goychuk@physik.uni- averaged propagator is found in this work in the explicit
augsburg.de form for the first time. This presents tliest main result of
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this work which possesses an ample range of applications. .Igjperoperatoﬁ[g(t)](.):(1/ﬁ)[|3|[§(t)] ,()]. In other words,
particular, the noise-averaged propagator of the Kubo oscilyne has to find the noise-averaged propagator
lator with a stochastically modulated frequency, as well as

the corresponding line shape form, is also obtained. This + _ .
presents thesecondmain result of this work which can be (Ulto+ tto)) ={ Zexp -1
important, e.g., for the single-molecular spectroscopy.

to+t

E[f(f)]d7]>, (5

fo

where7 denotes the time-ordering operator. It is the major
advance of this work that we obtain the Laplace transform of
1. MODEL AND THEORY propagator (5) in the exact form for arbitrary non-
Markovian processe§(t) of the discussed fornThe results
Let us consider an arbitrary quantum system with thepf previous research work done within the framework of
Hamilton operatoH[ £(t)] which depends parametrically on SLE approach for the discrete Markovian proceq@ggol-
the stochastic proces&t) which in turn can acquire ran- low as a particular Markovian limit of the developed non-
domly in timeN discrete values;. Accordingly, the Hamil- Markpvian theory. Moreover, some previous non-Markovian
tonian I:|[§(t)] can take orlN different random operator val- theories, nota_bly that by van K"’Fmp@ﬂ] and t_hat by .Ch'
~ ) i . vosta and Reinekdrl 8], are also included as different inter-
uesH[&]. The discrete stochastic process is assumed tq beJﬂ'etations of this general formulation.
non-Markovian rene\_/v_al process which is fully che}ractenze In particular, the approach of van Kampen is reproduced
by the set of probability densitieg;(7) which describe ran- by introduction of the time-dependeage-specificatesk; (t)

dom transitions among the statés Namely, 4;(7) is the |ike in the renewal theony20]. The probability densities
probability density for making transition from the stgtéo g;(7) then read [17]
the statei. These probability densities must obviously be

positive and obey the normalization conditions Yy (P = kij(r)exp[— s f kij(t)dt]. (6)
N o i Jo
21 o pj(n)dr=1, 1) The Markovian case correspondskig 7) =const. Any devia-
1=

tion of ¢;(7) from the strictly exponential form which yields
forall j=1,... N. All random transitions are assumed to be a time dependence of the transition rakgér) amounts to a
mutually independerit. The residence time distribution non-Markovian behavidt. Furthermore, the survival prob-

(RTD) #;(7) in the statej reads obviously ability @;(7) in the statej within the time-dependent rate
description is given by
(1) = 2 (7). ) N
' ®;(7) = exp[— >k (t)dt} (7)

The survival probabilityd;(7) of the statej follows then as i=1Jo

) f‘” (d and Eq.(6) then can be recast as

di(7) = (7)dT.

=) (7): =y (DD, ®
This is the most general description used in the CTRWThe introduction of time-dependent rates is one possible way
theory[16]. to describe the non-Markovian effedisee footnote R It is

The problem is to average the quantum dynamics in thé&ot unique. For example, Chvosta and Reineker adopted a
Liouville space which is characterized by the Liouville-von quite different and more general standpoj@g]. Namely,
Neumann equation they defined

d ) -
d—tp(t) =—iL[&1) ]p(t) (4) “Note that such a time dependencekgfr) has nothing to do with
the possible nonstationarity invoked—e.g., due to the action of ex-

for the density operatop(t) over the realizations of noise ternal fields like in the problem of stochastic resona(®®) [21].

&(t). Here£[£(t)] in Eq. (4) stands for the quantum Liouville Introducing such time-dependent rates is merely a language to de-
scribe the non-Markovian memory effects. In the case of a nonsta-

- tionary background noise driven by a time-dependent sigikal in
YThis is the so-called semi-Markov assumption. The term “semithe non-Markovian SR problem; di22]) the use of such language
Markov,” frequently used in the mathematical literature, is, how-in a non-Markovian situation should be avoided as it can potentially

ever, somewhat unfortunate. It comes from a generalization of theonfuse the reader.

discrete time Markovian chain processes to the continuous time This observation can be rationalized as follows. Let us consider a
case. Such continuous time processes are, however, generally naejourn in the statg characterized by the survival probability (7).
Markovian since the statistical independence of the residence tim&he corresponding residence time interf@lr] can be arbitrarily
intervals does not imply yet that all the multitime joint probability divided into two piece$0,7,] and[ 7, 7]. If no memory effects are
distributions for the considered process can be factorized througpresent, thenb;(7)=®;(r—7;)®;(1). The only nontrivial solution

the corresponding two-time conditional and single-time probabilityof this latter functional equation which decays in time redgér)
distributions. =exp (-7, with ;> 0. This corresponds to a Markovian case.
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i (7)1 = iy (D (1), (9) infinite past and one assumes that the initial preparation of
the quantum system in a nonequilibrium state has no influ-

with %; p;j(r)=1. The interpretation is as follows. The pro- gnce on the noise source. This is the most important physical
cess stays in the stajeduring a random time interval char- gjtyation to confront with.

acterized by the probability density (7). At the end of this The task of performing the noise averaging of the quan-
time interval the process makes jump into the statéth a  tym dynamics in Eq(5) can be solved exactly due the piece-
generally time-dependent conditional probabilly(7). In-  wjse constant character of the noie) [23,24. Namely, let
deed, any stochastic process of the considered kind can Rg consider the time intervély,t] and to take a frozen real-

interpreted in this way. For some particular applications injzation of &(t) assumingk switching events within this time
[18] the probability densitieg;(7) were taken strictly €xpo-  interval at the time instants:

nential and all the non-Markovian effects were assumed to

come from thetime-dependertransition probabilitieg;(7). o<t <t,< - <t <t. (12
By equating Egs(8) and (9) and taking into account that
Yi(7):=-ddj(7)/d7 it is easy to see that the van Kampen
approach can be reduced to that of Chvosta and Reinek

Correspondingly, the noise takes on the valgggjl, g,
i the time sequel. Then, the propagatd(t,t,) reads obvi-

with the time-dependent transition probabilities ously
= o 1L Nt amiLlg,  1t-q) . .. g 1L[¢ 1(t—tp)
ki (7) U(t,tp) = e~ We Ay, e 8, .
pij(T) = I (10) (13)
>, k()

. . . » Let us assume first that it is known with certainty that at the
and with the nonexponential probability densiti#(7)  (ime instantt, the process(t) hasjust startedits sojourn in
which follow as ¢;(n)=y(Dexd=fo %()dt] with ¥%(D:  he statej,. In other words, the proces&t) has beerpre-
=2 kij(7). paredin the statej, at t,. Then, the correspondinigtimes

The description of non-Markovian effects with the time- ¢qngitional probability density for such noise trajectory real-
dependent transition probabilitigs (7) seems, however, be i;ation is

merely a theoretical device. It appears to be rather difficult

(if possiblg to obtainp;(7) from the sample trajectories of Pk(gjk,tk;gjk_l,tk_l; ;gjl,tl|§jo,to)
an experimentallpbservedandom procesg(t). In view of _
Eqg. (10) the same is valid for the concept of time-dependent =0 (=15, (b~ ben) - (L= To). (14)

rates. These rates cannot be measured directly from t
sample trajectories. On the contrary, the R§fd7) and the

time-independent;p(with p;: =0, which is assumed in the
following) can be routinely deduced from the sample trajec-(for k=0, ... »0). Literally (operationally this means the fol-

tories measured in single-moleculaexperiment. This latter lowing. First, one has to construct the time-ordered product
description is definitely more advantageous from the pracubf Egs.(13) and (14—i.e.,

cal point of view. From the experimentally well-defined
quantities®;(7) and p;;, the corresponding time-dependent D, (t_we-iﬁ[ﬁjk](t-tk)%j
rates description can be readily found as “ “

hﬂ order to obtain the noise—averag@di(t,to»jo conditioned
on suchnonstationaryinitial noise preparation one has to
average Eq(13) with the probability measure in Eql4)

k—l(tk - tk_l)e—iﬁ[fjk_l](tk—tk_l) .

X4t~ o)™ Ll 170, (15)
i () = - p LLLUDT (11) o _
] ij dr Second, one has to perform tkelimensional time integra

tion of Eq. (15 over the variablest,} within the time-
Moreover, as will be shown below, this description with con-ordered domaii12) and to sum the results over all possible
stantp;; in Eq. (9) does provide a consistent way in order to {j,}. Furthermore, this procedure has to be repeated for every
construct thestationary realizations of thenon-Markovian k=0, ... « and the results summed at the end. The dase
processé(t) and, therefore, in order to findJ(t)) averaged, =0 is special with
correspondingly, over thestationary realizations of &(t).
These circumstances give definite advantages of the ap- Po(§j,ito) = Pj (t—to). (16)
proach with factorizedy;;(7) and time-independent jp as The just outlined task can be easily done formally by use
compare with the formulations ifiL7,18, even though the ) L~
technical details are quite similar. The correct quantum©f Lhe Laplace transform, denoted in the followingAds):
mechanical propagator averaged over stetionaryrealiza-  =Jo €XP(=sn)A(7)dr for any time-dependent quantit(r).
tions of anon-Markoviandiscrete-state noise with an arbi- For this goal, let us introduce two auxiliary matrix operators
trary number of states is obtained in this work for the firstA(s) andB(s) with the matrix elements
time. This corresponds to the situation where the quantum
system was prepared at the tigan a nonequilibrium state s (9:= 6
described by the density matrjxXt,), but the noise was not KI(S): = O 0
specially prepared but it has been already relaxed to its sta-
tionary state. The ambient noise evolution was started in thand

e}

P|()e tabgr (17
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~ * _sicle) interval ro=t;—ty be introduced. These survival probabili-
Bi(s): =f (r)e S, (18 ties read [20]
0

correspondingly. Then all what remains to do is to sum the f ®;(7)dr’
geometric matrix operator series. The result reads, DO (5= "
J. =

<Tj> 7
where(r))= [ ®;(r)dris the mean residence ting®RT) of

the noise in the statg Only for strictly exponential survival

wherel is the unity matrix. It is quite obvious that instead of probabilities—i.e., in the Markovian casel;}—o)(r):CI)j(r).
the quantum Liouville operator in E¢4) there could be any  otherwise, this is not the case. The corresponding residence

linear operator—e.g4£ could be a matrix ang(t) could be  time distributions follow immediately as the negative time

then a vector function. Then, the developed theory can bgegrivative ofd)(o)(r) in Eq.(20) and are known to bg15,2q
immediately applied to the averaging of arbitrary linear sto

(20)
(U(s);,= ZAAGL - BT, (19)

chastic differential equationf24,25. Even nonlinear sto- © ®i(7)
chastic differential equations can be attempted to deal with g7 (1) = —J—<T‘> . (21
i

by introducing a Liouville equation for the corresponding
classical probability densit}25]. The earlier results ifil7] The first timetransition densitiesbi(jo)(r) then follow as
and[18] are reproduced immediately from Eq&7)—(19) by

an appropriate modification of the considered problem and 0 _ .. Pi(7) 22
specifying the transition probability densitigf;(7) from a Yi (1) =py (7)) (22

most genera{nonfactorized formto a particular representa-
tion in accordance with the above discussion. For the logical consistency of this definition with the consid-
The derived result in Eqg17)—(19) corresponds to the eration pursued in footnote 4;; must betime-independent
initial preparation of4(t) in a particular statg,. Experimen- ~ constants. Otherwise, a logical problem emerges: How to
tally, this presents a quite unusual and strongly nonequilibmake the proper conditioning @f;(7) on the unknown times
rium situation. For a stationary environment one has to perbeforety? This is the reason why within the approaches of
form yet an additional averaging Qﬂ(s)>j0 over the initial t'mﬁ'de%e”demﬁj(ﬂ or t:me-gepenilent r"’}tekij(?) itis
distribution Pjo(to) taken as the stationary distribution—i.e. rather obscure how to solve the problem of stationary noise

_ _ st St_1: _ . " averaging. Therefore, these approaches do not seem suit well
pjo(to)—pjo, \_/vh_ere p; —Ilm_tﬁoop](t). I.ndeed, thl_S presents a tor this stated purpose.
valid prescription for stationary noise averaging in the Mar- 1, accord with the above discussion, the transition density
lgg;/ilpat?or??:%or;ﬂﬁ(\:/igr’nm a non-Markovian case this pre'z/lejo(tl—to) in Eq.(14) must be replaced bg{t}‘l)j)o(tl—to) from
Quite generally, the stationarity of noise realizations in the=d- ((20%)' Moreover,®; (t-t;) in Eq. (16) must be replaced
strict sense requirg@5] that not only the single-time distri- by ®; '(t=to) from Eq.(20). To account for these modifica-

bution p;(t), but also all the multitime joint probability dis- tions, two auxiliary quamitieg\ﬁ?(s) and §f(?)(s) are intro-
tributions of the given process must be invariants of a simulyyced which are given by the expressions similar to Egs.

taneous time shift of all time arguments. However, for many(17) and(18), but with ®'%() instead ofd,() and #9(7)
physical applications, the stationarity in a weak sense—i.€jstead ofh (7)—i.e ! !
ij €.,

on the level of the two-time P(j,t;jg,tp) joint
distribution—is sufficient. Then, e.g., the stationary power - _ _

spectrum of the corresponding process can be defined. This’A clear-cut proof of this fact was presented in many works; see,
two-time joint distribution can be expressedR§,t;jo,to) e.g., [15,_22_. We reproduce it here for the _re_e_lder’s convenience.
=T16(t|to)pjo(to) Via the conditional probabilitiesl;;q(t|to) Indeed, it is not known for how long the initial statéto) was
(propagator of the processor a stationary process the con- already occuplgd)efore the observation started &=0. W|th0_ut
sistency conditionp®'=XoTTj;o(t|to) p’%, must be satisfied for loss of generality, let us assung€0)=¢; and the unknown time
all times: i.e. 0> has to be the fixed point of the correspond- elapsed beforg=0 was7 . Then, the actual survival probability at
ing prop’aéait,gjr(see the Appendix Tphe propagator ofpthe t=ryis (7 + 7). On the other handp; (7' + 1)) (el 7 ) (r),

- - i (ﬁhere the correspondingpnditional survival probability<1>j(ro|r*)
non-Markovian process having this property can be calle introduced. This latter relation serves just as a definition for

quasistationary. In the present case, in order to construct suq;}(mh*). In the Markovian caseb;(r|7") =;(ro). To obtain the

a prop_agator. and t_he correspond.il_ﬂg statiqnary realiz_ations Qfirvival probability of the first time interval ®(ry),

the noise trajectories the probability density of firlst time  gne must averageb,(=|7) over the probability density of’
intervals must differ from the all subsequent ones. Indeed, 'i(/vhjch s Pj(f)=:1>j(f*)/f§ (dt.  Therefore, CDEO)(TO):

a noise statg was occupied a=t, with the stationary prob- = 1= o,(r|~")p,(+')d7". Proceeding along these lines, the important
ability pf‘, it is not known for how long this state was already relation (20) follows immediately.

occupiedbefore ¢. The proper conditioning on and averag- °Note that no averaging over the unknown timégsee footnote
ing over this unknown time must be made and the corre4)was made if17] (see Appendix C thejeTherefore, the problem
sponding survival probabilities for thrst residence time of stationary noise averaging was not solved in this important paper.
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A9 = 21 J " ittadr f ) @|(r)dr'dr  (23)
<T|> 0 T
and
BO(g): = P8 " o (et PR o) (24
(mJo ()

The resulting geometric operator series can again be easily

summed exactly. For the(stationary noise-averaged
Laplace-transformed propagat@s(s)) we obtain

(U(9)) = 2 {AQ(s) + AS)[I - B8] BO(9)}; P, (25)
ij
where

s (T (26)

3

k

are the stationary occupation probabilities §f [see Eq.

(A10) in the Appendix and the corresponding discuskion
This result can be brought into a physically more insightful

form by using the identity” ®;(7')d7’'=(7)- [ ®;(7')d7’
and upon introducing two new auxiliary quantities

Ek|(3): = 5k|f e—(S+il:[§|])'rf (I)|(T’)dT,d’T (27)

0 0
and

Dy(S): = 8 fox (D sHLlad gy (28)
Finally we obtain
(U(9) = (U(S))static - %Ej {C(s) - A(9)[I - PD(9TPAS)};,

(29)

where(D(s))statiC is the Laplace transform of the statically

averaged propagator,

(U(1)staiic = 2 €I, (30)
k

T=3 (7 is the sum of mean residence times, & the

matrix of transition probabilitieg; [“scattering matrix” of

the random proces&(t)]. The result in Eqs(29) and (30)

together with Eqs(17), (27), and (28) presents the corner-

PHYSICAL REVIEW E 70, 016109(2004)

single-molecular spectrosco¥]. In Eq. (31), o[ &(t)] pre-
sents a stochastically modulated frequency of quantum tran-
sitions between the levels of a “two-state atom” or between
the eigenstates of a spin 1/2 which are caused by the action
of a resonant laser or magnetic field, respectively. The spec-
tral line shape is determined through the corresponding sto-
chastically averaged propagator of Kubo oscillatof s

IO Lim ReU(iw+ é)].

T e—+0

(32

Note that the limite— +0 in Eq.(32) is necessary for the
regularization of the corresponding integral in the quasistatic
limit T— . By identifying L[ §] with —w, in Eq. (29) we
obtain after some algebra

P 1 El—Tpk(s—iwk)

~ P

U =

o= o S o-ion?
k

1 1-Yi(s—iay) 1
+
2<Tk>fL|2,m S—iwy (l—PB(S)>|m
k

1-Y(s-iwy)

Xpmn S—iw
n

(33

with D (S) = Smidm(S—iw,). The corresponding line shape
follows immediately from EQ(33) by virtue of Eq.(32).
This result presents a non-Markovian generalization of the
earlier result by Kubqd?2] for arbitrary N-state discrete Mar-
kovian processes. The generalization consists in allowing for
arbitrary non-exponential RTD'g(7) or, equivalently, in
accordance with Eq11) for time-dependent transition rates
kij(7). This generalization is obtained here for the first time
and presents one of our main results. Let us further simplify
the result in Eq(33) for the case of two-state non-Markovian
noise withp;,=p,,=1. Then, Eq(33) yields after some sim-
plifications

~ _ 1 (1)
Vo= 2 i+

(01— wz)z
() + (1)) (s~ Tw)*(S—iwy)?

(L= Ua(s=iw) [ (s iwp)]
1= Ys(s=iw)y(s=iwp)

(34)

stone result of this work which can be used in numeroudVith Ed. (34) in Eqg. (32) one obtains the result for the cor-

applications.

Ill. APPLICATION: KUBO OSCILLATOR

As a simplest practical example we consider the avera

ing of the so-called Kubo oscillator

X(t) =i £(1)]X(). (31

This particular problem appears in the theory of optical line

shapes, in the nuclear magnetic resondicg, and in the

g_

responding spectral line shape which is equivalent to one
obtained recently in Ref26] using a different method. It is
reproduced here as a simplest application of our more gen-
eral approach.

IV. SUMMARY

In this work the problem of the stochastic averaging of a
quantum dynamics with non-Markovian fluctuating param-
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eters has been investigated within the trajectory descriptiopropagatorHiSj‘(TiO) must satisfy the consistency condition
of continuous time random walk theory. The formally exactpf'=3; II3{(70)p;" for all imes7; i.e., 5°'is the fixed point of
expression for the stochastically averaged quantumis{(70). Let us prove this fact and find™ It is more con-
mechanical propagator is obtained for the most generajenient to do both tasks by finding first the corresponding
CTRW with uncorrelated jumps and for a nonequilibrium GME’s for p;(t). These generalized master equations are of
noise preparation. The problem of stationary noise averagingypstantial interegter se

has been solved for the practically relevant formulation with | order to find the corresponding GME’s the procedure
the time-independent matrix of transition probabilitigs.  of [19] can be applied to a more general present case of
Especially, the formally exact expression for the stationanhonfactorizedy; (7). Indeed, let us consider the conditional
averaged quantum propagator has been found in an expliciopapility Pu(jlio)(t) for making k jumps within the time

form. This general expression has been used on order to findaral [0,t] starting at=0 in the statg, with the probabil-

the stationary propagator of the Kubo oscillator describinqty p,,(0) and finishing in the stat¢ with the probability
0

the spectral line shape of optical transitions in a two—statej(t)_ This probability is given by a corresponding

atom. Further applications, such as decoherence of a tw -dimensional integral of Eq14) [see the discussion below
state quantum dynamics driven by two-state non-Markovia . 9 q ) | o .
g. (14)] with the summation made ov€{_1,jx-2,---,j1-

noises, including 1f* noise case, are in progress. . =0
The corresponding Laplace transfoﬁ’ﬁ(o(s) reads

PR =2+ X B9y, (8 ¥,,()

Jk-1 i1
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APPENDIX: PROPAGATORS AND GENERALIZED with (7) for the probability densities of the first time in-

MASTER EQUATIONS tervals. Furthermore, fok=0, P’(9)=®|"(s)8;,, where

= (0)/ i .

In this appendix, both the nonstationary propagator andl?j (s) is the”LapI(ag)ce transioorrpo)of the corresppnd|pg sur-
the propagator for quasistationary initial preparations for the/ival probability &;7(r)=X; [7 ¢ (7')d7" of the first time
considered non-Markovian processes are obtained, alorigiterval. Fork=2, the quantities?f!?)(s) satisfy obviously the

with the corresponding generalized master equation§0||owing recurrence relation: !
(GME’s). The propagatofl;; of the procesg(t) or the ma-

trix of conditional probabilities connects the initial probabil- 5 5 3 Pg}‘l)(s)
ity vector f(to) with the final one (t,+7)—i.e., P}}?)(s) = D;(9) > Yjn(s9)—=—. (A5)
n n(S)

(to+ 1) = 2, L (tp + 7itp) pi(to) . Al ~
Pilto* 7 ; ito* tolpi(to) (A1) Furthermore, the Laplace transform of propagdigr (s) is

~ ; (k) T1 —v» pk
The expression for the Laplace transfofi)(s) can be ob- exprgssed In terms (FPJJ'O(S) as Hiio(s)_2_k=0 ijo_(s) ' T_hen,
tain in a way similar to the averaging of quantum propagatof?y Virtue of Laplace-transformed equatiohl) with t,=0,
in Egs.(19) and(25). Basically, one has to put thera— 0. < _ _

For the nonstationary propagator &f)—i.e., when the pro- > Pﬂ‘é(s)pjo(O) =pi(s) - > P}jlg(s)pjo(O) - P](]Q)(s)pj(O)
cessé(t) startsits evolution att=t, in a particular state—the k=2 o jo

result reads for the general case of nonfactorized probability B B 105
densitiesy;(7) as follows: = ‘PJ(S)E w,-n(sL—E E pg}—b(s)

~ ~ ~ 1 n CI)n(S) k=2 jo °

IIij(s) = Di(s){[1 - ()], (A2) Xpy,(0), (A6)

vaze)re;[f:s( t)heFmatrlx gf l/l”'_(s) anq q)!'(?:[l_"/’i(?)]/s’ H where the recurrence relatigAS) has been used. The use of
#i(s)=Z; ¢j(s). For quasistationary initial preparations the g < Bk (9)=B.(s)-P© 0) in Eq. (A6) fi-
propagator of the non-Markovian process is generally differ- lez lo IdnJ (SPi(O=Pnl(S) =y (S)Po(0) in Eq. (AB) fi
ent[22,27. In the factorized casgy;(7)=p;j¢;(7) it reads for nally yields

the considered procegsf. Eq. (25)]: i Bils) = a)j(s)z %n(s)w + c~I>}°)(s)p,-(O)
Fsteq) = &0 3 AR J(C) i Pl
I15(s) = ©{%(9) 8 + Di(9) 2 {[1 = V()] e o $0(9)
k 7j =z Oy — T (@ n
(A3) + q)J(S)% (lpjn (S) lpjn(s) a)n(s) )pn(O)
Where5§°)(s): 1/s—[1—¢~pj(5)]/(52<71>)- The stationary popu- (A7)

lations follow as p?‘:Iimsﬁo[sﬁij (s)]. The quasistationary Let us consider now the case when the noise has been pre-
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pared att,=0 in a particular state with the probability one. _pf_t et
Then,z,/;.(.o)(r)E i (1) and the last term in EqA7) vanishes. N > A7 - (A10)
7ij J . . . . <7'J> n ()
For this class of nonequilibrium initial preparations, the in-
version of Eq.(A7) yields For an ergodic process the stationary probability to find the

process in a particular state should be proportional to the
. t time which the process spends in this particular state on
P =-2 f Pt =t)py(t)dt’ average—i.e., be given by E(R6). It is easy to verify that
n -0 Eq. (26) provides the solution of EqA10) for 2; «;;=1 (for

t ) o the factorized case;; coincide obviously withp;;). This lat-
+2 fo Pjn(t=t")py(t')dt’, (A8) ter condition can be also expressed as
n

where the Laplace-transformed kernels reads N o
> gij(ndr=1. (A11)

SUin(9) e

~ S
Tin(s) = 1-% (5)7 (A9) For factorized case ¢j,(7)=pjnifn(7) with w}o)(r)
n

=®;(n) /(7)) (see footnotd, the inversion of Eq(A7) yields
with Tﬁn(s):Ej ijn(s)_ The just derived GMEAS8) and(A9)  the GME for the discussed non-Markovian process with qua-
is the most general GME for the continuous time randomSistationary initial preparations:

walk processes with uncorrelated jumps for the given class

of initial preparations. In the case of factorizdut still non- t , , , t
separable CTRW with ¢;(7)=p;;(7) it reduces to the Pt = f Tj(t-t)[p(t) - p(0)]dt + > pJnJ
GME of Burstein, Zharikov, and Temkifil9]. Moreover, "
with the assumption that ally;(7) are equal(separable , A J1(0) pn(0)

CTRW of Montroll and Weis)s]it reduces further to the X[Pa(t') = Pa(0)Jdit _?J;Jrz Pin (r) "’ (A12)
GME of Kenkre, Montroll, and Shlesing¢28]. The station- . N "

ary populations can be obtained from E@\7) as Pjst with the kernels given b¥;(s)=sy;(s)/[1-;(s)]. By choos-
=lims_o[Sp(s)]. Assuming that the mean residence times;, P(0)=p! which satisfy Eq.(A10) it becomes obvious
(1)) exist—i.e., ¥(9)=a;—stj+o(s) with 3 @;=1 and thatp,(t)=p;'is the solution of Eq(A12) for all timest>0.
2 t;=(7)— Eq. (A7) yields the system of linear algebraic This means that the stationagy' provides indeed the fixed
equations for the stationary populations: point of the corresponding quasistationary propagator.
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